
                                                                                                                                      
 

   
Radnić, J., Harapin, A., Matešan, D., Grgić, N., Smilović, M., Sunara, M., Šunjić, G., Džolan, A. 

 49 
   
 

                                                                                                                                        Broj 10       prosinac, 2015  
 

Numerical simulation of fluid-structure coupled problems                                                             
  

 
NUMERICAL SIMULATION OF FLUID-STRUCTURE 
COUPLED PROBLEMS  
 
1prof. dr.sc. Jure Radnić  
1prof. dr. sc. Alen Harapin 
1prof. dr.sc  Domagoj Matešan 
1Nikola Grgić 
1Marija Smilović 
1Marina Sunara 
1Arhitektonsko-građevinski fakultet u Splitu Sveučilište u Splitu 
2mr.sc.Goran Šunjić 
2Ante Džolan, mag.građ. 
2Građevinski fakultet Sveučilišta u Mostaru 
 
 
Summary: This paper briefly describes the numerical models for the simulation of fluid-
structure coupled problems. The applied models are primarily intended to simulate the fluid-
structure dynamic interaction in seismic conditions. Models can simulate the most important 
non-linear effects of plane and spatial structures that are in direct contact with fluid. Some of 
models' possibilities are illustrated in numerical analyses of the seismic behavior for several 
practical examples. 
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NUMERIČKA SIMULACIJA VEZANIH PROBLEMA FLUID-
KONSTRUKCIJA  
Rezime: U radu su ukratko prikazani numerički modeli za simulaciju tzv. vezanog problema 
interakcije fluida i konstrukcije. Primenjeni modeli su prvenstveno namenjeni za simulaciju 
interakcije fluida i konstrukcije u seizmičkim uvetima. Modelima se može da simulišu 
najznačajniji nelinearni efekti ravanskih i prostornih konstrukcija koje su u direktnom doticaju 
s tečnošću. Neke mogućnosti modela prikazane su kroz numeričku analizu nekoliko 
praktičnih građevina pod seizmičkim delovanjem. 
Ključne reči: numerički model, vezani problem, interakcija fluid-konstrukcija, seizmičko 
delovanje 
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 1. INTRODUCTION  

 
Department of Concrete Structures and Bridges at the University of Split, Faculty of 

Civil Engineering, Architecture and Geodesy, has already more than 25 years in research 
and developing of models and software for analysis of structures which are in direct contact 
with fluid. In the last 10 years the researchers from Faculty of Civil Engineering University of 
Mostar joined with them in improvement the old and development of new techniques and 
models for this problem. 

During past years the developed software was tested on various examples from 
literature. Also, these researches were basis for many articles which were published in 
journals and conference proceedings, as well as books’ chapters. Also, developed software 
was used as useful tool for design and calculation of many standard engineering structures 
of practical proposes. 

Structures which are in direct contact with fluid, for example: dams, water tanks 
(reservoirs), off shore structures, pipelines and water towers etc, can often be encountered in 
engineering practice. Numerical models for real simulations of these structures have to 
include the simulation of the fluid-structure interaction to ascertain the real behavior of this 
complex system. This problem is particularly emphasized under dynamic/seismic conditions 
and it is commonly referred to as a coupled (multi-field) problem [3, 30].  

Some of those structures can be seen on Fig. 1. 
 

                
Off-shore 
structure 

Underwater tank Underwater 
tunnel 

Dam 

Figure 1. Examples of structures in direct contact with fluid 

 
A coupled multi field problem involves two or more interacting fields, for example: 

gravity dam with accumulation, water tower full of water etc. Such a problem is time 
dependent and the state of one field is continuously linked to the state of other fields and 
neither field can be solved independently from the other. Here, the coupling normally occurs 
through the differential equation representing different physical phenomena. The coupled 
fields may be overlapping as in case of seepage and thermo-mechanical problems. On the 
other hand, the coupled fields may be non-overlapping as in fluid-structure interaction 
problems as discussed in this work. Here, the coupling occurs due to the imposed boundary 
condition at the interface. The fields may be coupled with all the other participating fields or 
with only few of them. The coupling in some problems like seepage may disappear when 
steady state is reached [3]. 

Two main approaches exist for the simulation of fluid–structure interaction problems: 
− Monolithic approach: the equations governing the fluids’ pressures and the 

displacement of the structure are solved simultaneously, with a single solver 
− Partitioned approach: the equations governing the fluids’ pressures and the 

displacement of the structure are solved separately, with two distinct solvers 
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The monolithic approach requires a code developed for particular combination of 
physical problems whereas the partitioned approach preserves software modularity because 
an existing fluid solver and structural solver are coupled. Moreover, the partitioned approach 
facilitates solution of the fluid equations and the structural equations with different, possibly 
more efficient techniques which have been developed specifically for either fluid equations or 
structural equations.  

Thus the partitioned approach has various advantages: (i) the resulting model is very 
modular, (ii) it’s easy to make any modifications, (iii) every modification in one field improves 
the whole model, (iv) the programmer/improver can have knowledge in (only) a single field. 

This article briefly describes the developed models and software for numerical 
modeling of the dynamic interaction of water-structure systems. The described models are 
suitable for problems with limited fluid motions, such as the response of offshore structures 
and dams to waves or earthquake. 

2. NUMERICAL MODELS  

2.1. Introduction 
 

All solutions shown here are based, as it mentioned earlier, on the partitioned scheme 
where individual fields are solved independently by considering the interaction information 
transfer between them at every stage of the solution process. This approach allows the 
usage of ordinary approaches and appropriate mathematical/physical models for separate 
fields (structure and fluid) that include minor modifications for the influence of interactions. 

Developed models and software are based on finite elements method for the spatial 
discretization and finite differences method for the time discretization of the system [1-3]. For 
structure and soil the displacement formulation is used, and for fluid the displacement 
potential formulation is used [3, 30].  

In articles [1-5] the basic algorithms for separate fields as well as for fluid-structure 
interaction problems are given. Furthermore, articles [6-7] present the development of non-
linear numerical models for dynamic interactions of the fluid-soil-structure system for plane 
and spatial problems.  

Some non-linear models for structures are described in articles [8-13], and some 
models for solve eigen value problem are presented in articles [14, 15].  

Articles [16-21] present some recent works in this field. 
 

2.2. Numerical model for fluid 
 
2.2.1. Introduction 
 

A fluid is a substance (either a liquid or a gas) that continuously deforms under the 
action of applied surface stresses. Fluid flow may be classified as either inviscid or viscous. 
Inviscid flows are frictionless flows characterized by zero viscosity. No real flows are inviscid, 
but there are numerous fluids and flow situations in which viscous effects can be neglected. 
Often viscosity effects are confined to thin regions or boundary layers near flow boundaries, 
and the rest of the flow can be considered frictionless. Inviscid flows may be further classified 
as either compressible or incompressible, depending on whether density variations are large 
or relatively unimportant. In this investigation the fluid is considered inviscid and the Eulerian 
formulation is used [3]. 
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2.2.2. Displacement Potential Formulation 
 

The behavior of fluid, in the most general form, can be expressed by Navier-Stokes 
equations: 

2i
i i

v
ρ ρ R p μ v

t
∂

= − ∇ + ∇
∂

 (1) 

In this equation ρ represent the density of the fluid, vi the fluid velocity, p the pressure, 
Ri the gravitational forces and µ is the dynamic viscosity. 

The displacement potential is defined as: 

iψ= ρ u∇ −  (2) 

The ui are the displacements, which can be expressed: 

i
v

i

u pε u
x E

∂
= = ∇ = −

∂
 (3) 

where E represent the bulk modulus. 
If the changes in fluid density (ρ) can be neglected, then using (2), Navier-Stokes 

equations (1) can be reduced, and with neglecting of viscosity and gravitational forces, the 
equation (1) becomes: 

ψ= p∇ ∇&&  (4) 

This formulation is called displacement potential formulation, and is in very common 
use, because it can easily described non-linear fluid behavior, which will be shown later. 

Spatial integration of (4) yields: 

ψ=p&&  (5) 

and by eliminating p, u and ρf from (3), (4) and (5) we obtain: 

2

1ψ= ψ
c

∇&&  (6) 

where c is sound velocity in fluid. The equation (6) represents well known wave equation for 
inviscid fluid. 
 

2.2.3. Boundary conditions 
 

(i) The prescribed pressure on the free surface may be expressed as: 

ψp ψ g
n

∂
= =

∂
&&  (7) 

(ii) On moving boundaries, where un is the normal displacement of the surface: 

nψ n ρ u∂ ∂ = −  (8) 

On a rigid boundary un=0, therefore, 0nψ =∂∂ . In the case of a base excitation, un 
is composed of the translation at the base and the relative displacement of the 
structure with respect to the base. 
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(iii) At radiating boundaries (Sommerfeld’s condition): 

ψ n ψ c  ∂ ∂ = − &  (9) 

  
 2.2.4. Finite element discretization 

 
Using the standard finite element Galerkin process: 

u

ψ=

=

Ψ N Ψ
u N u

 (10) 

where ψN  and uN  are the shape functions for displacement potential Ψ and structural 
boundary displacement u, then it can be shown that: 

( )f f f f tρ ++ + = −M Ψ C Ψ K Ψ f Q u d&& &  (11) 

Above equation represent the differential equation of dynamic equilibrium of system, in 
matrix formulation. In equation (11), Mf is the mass matrix of the fluid; Cf is the radiation 
damping matrix; Kf is the stiffness matrix of the fluid; ff is the vector of applied nodal forces; 
Qt is the fluid-structure interaction matrix; Ψ is the vector of unknown displacement potential; 
ρf  is the density of the fluid; u is vector of displacements of the moving boundary relative to 
the base and d is the vector of base excitations. 

Above matrices can be expressed: 

( )

( ) ( )

( ) ( ) ( )

( )

f

r

f f

i

j j ji i i
f ij

V

T
f i jij

T 2 T
f i j i jij

V

T
t ui jij

 dV
x x y y z z

1 c    d

1 g    d 1 c    dV

   d

ψ ψ ψψ ψ ψ

ψ ψ
Ω

ψ ψ ψ ψ
Ω

ψ
Ω

 ∂ ∂ ∂∂ ∂ ∂     
= + +      ∂ ∂ ∂ ∂ ∂ ∂      

= Ω

= Ω +

= Ω

∫

∫

∫ ∫

∫

N N NN N N
K

C N N

M N N N N

Q N n Nv

 (12) 

where Vf is the fluid domain; Ωr is the radiating fluid boundary; Ωf is the free surface 
boundary; Ωr is the interaction boundary. The solution procedure for (8) is described in 
Section 2.5. 
 

2.2.5. Nonlinear fluid model 
In the fluid-structure interaction, nonlinearities are often confined to the structural 

behavior where the fluid is considered linear. Linear approach - pressure formulation, which 
presumes unlimited negative pressures in fluid, is natural and very suitable for this approach. 
However, the displacement potential formulation is more general, and can be used in linear or 
non-linear models. 

The fluid can take some tension which depends upon the concentration and size of 
micro bubbles present in the fluid. However, if the absolute pressure in a subregion of fluid 
drops to a value close to vapor pressure of the fluid, bubbles are formed and this physical 
phenomenon is known as cavitation. Physically, cavitation occurs when the total absolute 
pressure is less then the vapor pressure of the fluid. Cavitation can cause significant 
damaging effects on solid surfaces. 
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Cavitation occur when the total absolute pressure is less then the vapor pressure of the 
fluid i.e.: 

abs h a vp p p p p= + + ≤  (13) 

where pabs is the total absolute pressure, p is hydrodynamic pressure, ph is hydrostatic 
pressure, pa is atmospheric pressure and pv is vapor pressure. This implies that cavitation 
occurs when the hydrodynamic pressure drops below (pv-ps). The vapor pressure of water, 
for all practical purposes, can be taken from 0.02 to 0.03 MPa. 

The changes which the fluid may undergo under hydrodynamic excitation are a direct 
function of the mass dilatation s, defined as: 

( ) ( )T
f f f fs Div= ∇ ρ = ρu u  (14) 

where uf is displacement of the fluid relative to the initial static state. As long as pabs is 
greater then the vapor pressure pv, a linear relation between s and p is assumed: 

2p s ; c= −α α =  (15) 

where c is the acoustic velocity of the fluid.  
If equation 13 is true, cavitation occurs and the stage of linear fluid is no longer valid. A 

simple fluid model can be represented by the bilinear pressure-mass dilatation relation 
shown in Fig. 2. Cavitation, therefore, commences when the following condition is reached: 

( ) 2
h a vs p p p c≥ + −  (16) 

 
Hydrodynamic 
pressure (p)

Mass 
dilatation (s)

(p  + p  - p )/ch a v
2

(p  - p  - p )v h a

Mass 
dilatation (s)

α c= 2 α2
α3

αi αi+1

α1

 
Figure 2. Relation between mass dilatation and hydrodynamic pressure 

 
If cavitation occurs, the iteration procedure, shown in Fig. 2, has to be performed to 

obtain the value of the coefficient α. 
 
2.3. Numerical model for structure 
 
2.3.1. Introduction 
 

For dynamic equilibrium of a solid body in motion the Principle of virtual work can be 
used to write the equations independent of the material behavior: 

( ) ( ) ( ) ( )
t

T T T
sd u b u u d u td 0

Ω Ω Γ

′δε σ Ω − δ − ρ − µ Ω − δ Γ =∫ ∫ ∫&& &  (17) 

where uδ  is the vector of virtual displacements, εδ  is the vector of associated virtual strains, 
b is the vector of applied body forces, t is the vector of surface tractions, σ is the vector of  
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stresses, sρ  is the mass density, µ′  is the damping parameter and a dot refers to 
differentiation with respect to time. The domain of interest Ω has two boundaries: tΓ  on which 
boundary tractions t are specified and uΓ  on which displacements are specified. 

In dynamic analysis, the finite element method can be applied in both analyses: for 
space and time. However, it is the general practice to use finite elements in space and finite 
differences in time [1, 2, 3]. This approach is adopted in this work. Here, the displacement 
formulation is used because of its simplicity, generality and good numerical properties. For a 
finite element representation, the displacements and strains and also their virtual 
counterparts are given by the following relationships: 

u u= ∂ = ∂
ε = ∂ε = ∂
σ = ε = ∂σ = ∂ε = ∂

Nu N u
Bu B u
D DBu D DB u

 (18) 

where u is the vector of nodal displacements, u∂  is the vector of virtual nodal variables, N is 
the matrix of global shape functions, B is the global strain-displacement matrix and D is the 
global constitutive matrix.  

If (18) are substituted into (17), and if we note that the resulting equation is true for any 
set of virtual displacements, then the following equation can be obtained: 

( )s i s i s i su u u+ + =M C R f&& &  (19) 

where: 

( )

( )

( ) ( )

( )

s

s

s

s t

T
s sk s sjkj

T
s sk sjkj

T
s i i i

T T
s sk i sk ii

  d

   d

u u  d

  d   d

Ω

Ω

Ω

Ω Γ

= ρ Ω

′= µ Ω

= σ Ω

= Ω + Γ

∫

∫

∫

∫ ∫

M N N

C N N

R B

f N b N t

 

 
 (20) 

where N is the matrix of global shape functions. 
For real structures, relationship strain-deformation is generally non-linear: 

( )u       ;       uε = =B B B  (21) 

which represent so called geometrical nonlinearity. In fact, because of geometry 
transformation, array B is not linear but depends on system displacement. Relationship  ε-u 
is known as model of geometry. 

Relationship between stress (σ) and strain (ε) is also generally nonlinear, and represent 
material nonlinearity. It is usually called material model or constitutive relationship. 

In all calculation, origin point is linear elastic behavior. For example, for a plane strain 
state and isotropic elastic material, matrix D is given as: 

( )( )

( )
( )

( )

1 0
E 1 0

1 1 2
1 2

0 0
2

 
 − ν ν
 

= ν − ν 
+ ν − ν  − ν 

  

D  (22) 
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where E and ν is well known Young’s elasticity modulus and Poisson’s ration, respectively. 
 

2.3.2. Structure nonlinearity 
 

Two main types of nonlinearity which occur in structures are the geometrical and the 
material nonlinearity, as mentioned earlier. 

Geometric nonlinearity 
Structures may undergo either (i) small deformations which are negligible compared to 

the dimensions of the body or (ii) large or finite deformations in which the theory of small 
deformations is no longer valid. The second type of deformation is termed geometrically 
nonlinear problems and special procedure is required for their solutions. In many real civil 
engineering structures geometric nonlinearity can be neglected. 

Material nonlinearity 
Deformations may be divided in recoverable or unrecoverable. A recoverable 

deformation implies that when the load is removed, the solid body retains its original position, 
whereas an unrecoverable deformation implies that when the load is removed, the solid body 
exhibit permanent deformations. All real materials have nonlinear behavior, but in many 
cases material can be consider linear. 

Many types of material model were developed to represent the variety of behavior such 
as linear elastic, nonlinear elastic, elasto-plastic, visco-elastic, visco-plastic, creep, cracking 
or fracture etc. Different hardening laws such as isotropic and kinematic hardening also 
developed in the plastic and visco-plastic models. Apart from the linear elastic models, all of 
these representations are nonlinear in some sense. 

 
 

 2.3.3. Numerical model for reinforced concrete structures 
 

A special material model was developed for the simulation of reinforced concrete 
structures [11-15, 22, 24]. It includes the most important nonlinear effects of reinforced 
concrete behavior: yielding in compression and opening and propagation of cracks in 
tension, with tensile and shear stiffness of cracked concrete, as well as nonlinear behavior of 
reinforced steel. In every integration point of every element, simulation of cracks opening and 
closing is possible. 

Special materials models were developed for plane (2D) problems, spatial (3D) 
problems and for shell structures. These models will be only briefly discussed here, and for 
further reading can be found in quoted references.  

Yielding in compression 
There is still no accepted constitutive model which could describe the complexity of 

concrete behavior under different stress states. Various models have been proposed for 
describing the stress-strain relation under multiaxial static stresses. Each of these has 
certain advantages and disadvantages, considering the analyzed problem. The simplified 
models, based on small number of the basic concrete parameters, are better for engineering 
practice because complex models based on greater number of parameters, cannot be used. 

A rather simple concrete model is preferred (Fig. 3), intended for ordinary engineering 
practice, founded on basic concrete parameters (uniaxial compressive and tensile strength, 
the modulus of elasticity and Poisson’s ratio) which should be known for other purposes 
anyway. 
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Figure 3. Non-linear behavior of concrete in compression (yielding) – 
1D (a), 2D (b) and 3D (c) problems 

 

Modeling of cracks 
The graphic interpretation of the concrete model under tension, for 2D problems, is 

presented in Fig. 4. Linear-elastic behavior has been assumed until tensile strength of 
concrete ft’ is reached. After that, the first crack in concrete is assumed to appear 
perpendicular to main tensile stress.  

  

Tensile 
Strain 

Tensile 
Stress 

7.05.0 ts ≤β≤  

155     ;  ts <≤= αεαε crtsts  

iσ

tf ′

tts f ′β

crε
iε tsε

iEoE

 
Figure 4. Graphical representation of concrete behavior in tension 

It is also assumed that, even after cracking, the concrete remains as a continuum. A 
model of the so-called smeared cracks has been used. It has been adopted that after the 
occurrence of the first crack, its position and direction do not change after subsequent 
changes of loading. Hence, the so-called model of fixed orthogonal cracks has been used. 

After the occurrence of cracks, concrete becomes anisotropic and the cracks directions 
define the main axis of anisotropy. Both, partial and complete crack closings at unloading 
have been modeled, as well as new opening of the previously developed cracks under 
repeated loading. The potential states of cracks, for 2D and 3D problems, are presented in 
Fig. 5. 

  
(i) 2D (plane) problems (ii) 3D (spatial) problems 

Figure 5. Schematic presentation of possible cracks pattern 
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The stiffness contribution of uncracked concrete between cracks was simulated by 

gradually decreasing the component of tensile stress perpendicular to the crack plane. 

Modeling of reinforcement 

The reinforcement model is graphically presented in Fig. 6, and the adopted stress-strain 
relationship for steel is presented in Fig. 7.  

The reinforcement bars are modeled as separate beam elements incorporated in base 
elements (Fig. 6a and 6b). The stresses can occur only in the bars direction. It was assumed 
that the concrete and reinforcement displacements were entirely compatible. Detail 
description of this model can be found in [11, 24]. 

A bi-linear stress-strain relation was used to describe the steel behavior, both in 
compression and in tension. For unloading conditions, a linear behavior with the initial 
modulus of elasticity was assumed. The bars collapse occurs when the strain in their 
direction exceeds the limit value auε . 
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Figure 6a. Modeling of 
Reinforcement for 2D 
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Figure 6b. Modeling of 
Reinforcement for 3D 
problems 
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Figure 7. Stress-
Strain Relation for 
Steel 

 

Model for composite joint 

Interface elements (Fig. 8) are used for simulation of continuous connection between two 
composite members [14, 15, 22]. They physically represents connection surface of base 
composite elements with determinate little width w (Fig. 9). These elements allow the 
simulation of sliding, splitting, detachment and impress on contact surface, according on 
acquired models of the interface element material behavior. 
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Figure 8.  Interface element 
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Figure 9.  Interface element in global 
(x,y) and local (ξ,η) coordinate system 
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 2.4. Equation for Coupled Fields Motions and Spatial Discretization 
  
 2.4.1. Coupled Fields Motions 

 
Behavior of the fluid-structure system (structure includes the structure itself as well as 

the surrounding soil) in dynamic load conditions, can be expressed with two second order 
differential equations [1, 3, 5-7]. If we use the displacement formulation for the structure and 
the displacement potential formulation for the fluid, dynamic equilibrium equations can be 
expressed in the following form: 

s s s s s cs

f f f f cf

=

=

+ + − +

+ + +

M u C u K u f M d f

M Ψ C Ψ K Ψ f f

&&&& &

&& &
 (23) 

where 

( )
cs

T
cf fρ  

=

= − +

f Q Ψ

f Q u d
 (24) 

In the above equations Ms, Cs and Ks represent mass, damping and stiffness matrices 
for structure, and Mf, Cf and Kf represent mass, damping and stiffness matrices for fluid. 
Vectors uuu &&& ,,  represent structure’s displacements and displacement’s derivations (velocities 
and accelerations) and ψψψ &&& ,,  are the displacement potential and associated derivations. Q 
is the interaction matrix between structure and fluid.  

Interaction between structure and base soil is modeled indirectly by contact elements in 
the connection surface. In fact, by applying the appropriate material model for contact 
elements, various effects in the contact surface can be simulated, such as: separating, 
embedment and sliding. 

Fluid-structure interaction surface with fluid and structure elements is shown in Fig. 10. 
Interaction matrix Q includes only the surface integration and is defined as: 

( )
i

T
ui pj iij  =  n dΓ

Γ
∫Q N Nr

 (25) 

 

Fluid (f) Structure (s)

f cf fcs

     
Figure 10. Fluid-structure interaction surface and unit norm 

 
2.4.2. Spatial Discretization 

As mentioned before, for plane (2D) problems, 8-node and 9-node isoparametric 
elements are used for fluid and structure. For spatial (3D) problems, 20-node and 27-node 
(“brick”) elements are used for fluid and structure. For thin curved structures, 8-node or 9-
node degenerated shell elements can be used for structure and 20 or 27-node spatial  
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element for fluid. Those shell elements are free of membrane and shear locking, 
according to [10]. 

For the simulation of connections between the foundation soil and the structure, 6-node 
contact elements can be used for plane and 16 or 18 nodes for spatial problems. 

Elements for 3D (spatial) problems are presented on Fig. 11, and elements for shell 
structures on Fig. 12. 
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Figure 11. Elements for spatial (3D) discretization 

1

1

2

X
Y

Z

2

3
3

4

45
5

6
6

7
7

8
8

9

10
Spatial 20-node 
shell element

degenerated 8-node 
shell element

11

12

13

15
14 16

17

18

19

20

 
Figure 12. Elements for shell structures 

 
   
  
 2.5. Solution Concept for the Dynamic Fluid-Structure Interaction Problem 

 
Direct solution of the equation system (23) requires large computer capacity. So, the 

previously described partitioned scheme is ideal for this kind of problems. In that approach 
for every increment of the imposed load and every non-linear problem iteration step, each 
field is solved separately by including interaction forces on the contact surface between fluid 
and structure. Presentation of the solution scheme is given in Fig. 13. 
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Figure 13. Flow chart for the solution of the fluid-structure coupled problem 

 
In the presented approach, structure is solved first and fluid second. This approach 

allows the developed independent models to be used for each field (partition analysis), with 
additional calculations of the interaction forces only. Thus, in the fluid-structure interaction 
model, all non-linear effects of material and geometry, that are present in a particular field, 
can also be simulated in the coupled problem. In Fig. 13 for time integration, explicit-implicit 
algorithm developed by Hughes [1, 2] is used. 

Predicted values uuu &&& ,,  and ψψψ &&& ,,  at the beginning of every time step are corrected at 
the end of the same time step. For convergence control of the iterative procedure, the 
increase of the structure’s displacements in comparison with current total displacements and 
the increase of the fluid’s displacements potential in comparison with the current total 
displacements potential are simultaneously monitored. Various options of the Newton-
Raphson method are used to solve the non-linear equations. 
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2.6. Additional Model Possibilities 
 

Solution of eigen value problem is also based on the partition solution scheme, with the 
Wilson-Yuan-Dickens (so-called WYD) method [4, 8, 9, 23] as the solution procedure. In 
dynamic problems, as well as in the structures’ response calculations, eigen values and 
eigen vectors are needed to know the vibration characteristics (determination of time step 
length). 

Radiation damping can be simulated on artificially formed fluid boundaries, as well as 
radiation and multi-axis structure damping for structure [2, 5, 6]. 

Simulation of fluid pressure in open cracks of a structure is included by additional nodal 
forces in finite elements that have cracks that fluid can get into. 

As external dynamic forces, various time-dependant dynamic loads can be applied. 
Also, seismic base excitations can be applied to the model. 

Complex system structure-soil-fluid can be loaded with arbitrary seismic excitation in 
direction of three main axes, which can be given by series of measured (accelerograph) or 
generated input data in discrete time steps.  

The computer programs (software) are equipped with adaptive and user-friendly 
postprocessor for the visualization of various numerical results. 

3. EXAMPLES 

What follows are four complex practical examples which illustrate some possibilities of 
the developed models and the applied software. 

 
3.1. Example 1- Koyna Dam 
 
The Koyna Dam is the largest dams in Maharashtra, India. It is a rubble-concrete dam 

constructed on Koyna River. It is located in Koyna Nagar, Satara district, nestled in the 
Western Ghats on the state highway between Chiplun and Karad. The dam, built in 1963, is 
one of the largest dams in India (Fig. 14). It is an atypical gravitational dam, with a crest 
length of 853.44 meters. It consists of 56 dilatation blocks of 17.07 m in thickness. Spillway 
length is 91.44 m.  

Fig. 15 presents the main geometric data of the Koyna dam. Detailed information of the 
dam geometry, construction materials, damages (cracks) and earthquake characteristics can 
be found in [25, 26]. 

 

 
 

Figure 14. Koyna dam, photograph [33] and comparison with typical gravity dam [26] 
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During construction, two accelerographs were embedded in the dam, and in one of 
them, in 1967, an earthquake that caused several significant damages was registred. 
Dominant damages of the dam manifested as horizontal cracks on the up-stream and down-
stream sides on many blocks, especially on lines where the total thicknes of the dam 
changes. 

 
Figure 15. Koyna dam – some geometrical data (all dimensions are in meters) [26]: 

(a) cross-section through dam body; (b) cross-section through spillway 

 
Spatial discretization of the system is presented in Fig. 16, and the used material 

characteristics are presented in Tab. 1. The behavior of the water-dam-soil system was 
analyzed for the previously mentioned registered earthquake. The system was analyzed 
separately for the linear and for the non-linear (cavitation) fluid model, with the following 
structure models: a) non-linear model without including the fluid pressure in open structure 
cracks (no FPC), b) non-linear model which includes the fluid pressure in open structure 
cracks (FPC). 

Some numerical results are presented in Figs. 17 and 18. Other results can be found in 
[25, 26]. Dam damages calculated through numerical models match the real crack pattern 
very well. 

ç
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Figure 16. Spatial discretization of Koyna dam 



                                                                                                                                      
 

   
Radnić, J., Harapin, A., Matešan, D., Grgić, N., Smilović, M., Sunara, M., Šunjić, G., Džolan, A. 

 64 
   
 

                                                                                                                                        Broj 10       prosinac, 2015  
 

Numerical simulation of fluid-structure coupled problems                                                             
  

Fluid (water) Structure (concrete 
dam)  

Ground 

0p
PaM 10.0p

sm 0.1439c
mkg 0.1019

v

a

3
f

=
=

=
=ρ

 

( )
( )
( )
( ) ( ) 0012.0maxmax

003.0
PaM 2.46f
PaM 6.24f

mkg 0.2690
2.0

PaM 0.31640E

sshst

scu

st

sc

3
s

s

s

=ε=ε
=ε

=′
=′

=ρ
=ν
=

 
( )
( )
( )
( ) ( ) 0017.0maxmax

;003.0
PaM 2.0f

;PaM 0.20f
mkg 0.1830

2.0
PaM 0.18000E

gshgt

gcu

gt

gc

3
g

g

g

=ε=ε
=ε

=′
=′

=ρ

=ν
=

 

Table 1. Material characteristics of the Koyna dam system 

 
Figure 17. Horizontal displacement of the Koyna dam crest for non-linear fluid model 

 

 
Figure 18. Hydrodynamic pressure at the bottom of the Koyna dam 

 

3.2. Example 2- Grančarevo Dam 
 
The Grančarevo Arch Dam in Bosnia and Herzegovina (Figs. 19, 20, 22) is a double-

curvature concrete dam with a perimetral joint. The dam was constructed in 1968. The height 
of the dam is 123 meters and the crest length is 439 meters. Its bottom thickness is 27 
meters and its top thickness 4.6 meters. The dam’s foundation dig was 230.000 m3 and the 
volume of poured concrete was 376.000 m3. The head of the dam is 100 meters. The dam 
created the Bileća reservoir with a maximum water depth of 51 meters and an available 
storage capacity of 1100 million cubic meters. The Bileća reservoir is the largest storage lake 
in Balkan. Its dimensions are: total storage volume: 1280 hm3 and surface of the reservoir on 
normal top water level: 2764 ha. Geometrical data tables (on Fig. 21) show basic geometrical  
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characteristics for individual arches some of which are shown in Fig. 20 and 21. Other 
detailed information about dam can be found in [27-31].  
 

 
Figure 19. Grančarevo Arch Dam 

 

 
 

 
Figure 20. Plan of the dam’s body with land topology (left) and cross section through central 

cantilever (right) [29] 
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Figure 21. Geometry of some arch elements of the Grančarevo dam [29] 

 
Figure 22. Positions of accelerographs in the Grančarevo dam body [29] 
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Figure 23. Finite element mesh of the Grančarevo dam–water–foundation rock interaction 
system – axonometric view and aerial view (Google map) 

 
Figure 24. Displacement of the dam's self weight and hydrostatic pressure of water 

The Institute of Earthquake Engineering and Engineering Seismology (IZIIS-Skopje, 
Macedonia) monitored the dam and performed several numerical simulations on different 
models, which were compared with results in situ [29]. All applied models included only the 
dam (structure), and water was treated as an additional mass on structure.  

The complex model of the water-dam-foundation rock system is presented in Fig. 23. 
Material characteristics are given in Table 2. For the dam and foundation rock 27-node 
(“brick”) elements are used, as well as for the accumulation (fluid). For the simulation of 
connections between the foundation rock and the structure 18 nodes contact elements are 
used. 

The dam is first analyzed for the self weight and hydrostatic pressure of accumulated 
water. The water level in the accumulation (reservoir) is at a relative elevation of 120.0 m 
(3.0 m below the crest). Displacements' field for this load is relatively small. The 
displacement in the crest of the dam is 0.52 cm in the horizontal direction (perpendicular to 
the crest) and 0.62 cm in the vertical direction. These results are in very good agreement 
with the results of the dam monitoring (0.58 cm in the horizontal direction and 0.68 cm in the 
vertical direction). Fig. 7 shows the displacement of the dam's self weight and hydrostatic 
pressure of water. 

The behavior of coupled system dam-water-foundation rock was analyzed for the 
registered earthquake from 1986, [29, 30] – Fig. 25.  
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Figure 25. Registered earthquake in accelerograph 688 in Fig. 21 
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Table 2. Material characteristics of Grančarevo dam system 

 

To determine the dynamic characteristic of the dam, analysis of the structure oscillation 
(modal analysis) was conducted [3, 7, 11]. The analysis was performed for the coupled 
system: dam, rock and water (full accumulation). The results of analysis, Fig. 26, are 
showing for the first four eigenvectors. It can be seen very good agreement with the results 
presented in the literature [31]. 

 
Figure 26. Oscillation periods, frequencies and eigenvectors for dam-accumulation system 
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Based on the calculated data, time step for dynamic analysis was adopted as ∆t=0.002 
s, which represents approximately 1/200 of first period (T1), and also well approximate given 
accelerogram (Fig. 25). Time integration of equations of motion was performed by implicit 
method for water and construction. 

Than, the registered accelerations on the bottom of the dam (accelerograph 688, Fig. 
22) were taken as imposed accelerations of the foundation’s rock (excitation) along the 
canyon (perpendicular to the dam axis). The maximal registered imposed acceleration was 
47.8 cm/s². The maximal registered acceleration on the dam was 145.1 cm/s² (accelerograph 
681, Fig. 22), and the maximal acceleration obtained through the numerical model was 149.3 
cm/s² (Fig. 27). Applied excitations cause hydrodynamic pressures that are always less than 
the hydrostatic pressure, so cavitation did not occur. 

Some calculation results are presented in Figs. 27, 28 and 29. Fig. 27 presents 
accelerations of the Grančarevo dam crest in time, Fig. 28 presents displacement of the 
Grančarevo dam crest in time and Fig. 29 presents hydrodynamic pressures on the bottom of 
the Grančarevo dam in time. Other results can be found in [29, 30, 31]. 
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Figure 27. Accelerations of the Grančarevo dam crest 
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Figure 28. Displacement of the Grančarevo dam crest 
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Figure 29. Hydrodynamic pressures on the bottom of the Grančarevo dam 

 

3.3. Example 3- Underwater tank "Khazzan" 
 
Khazzan (meaning: “To Store” in Arabic) was the name given to the tanks designed 

and built in late 1960s to store Dubai’s Oil by Chicago Bridge and Iron Company. Dubai’s 
Khazzans are unique in that they store Dubai’s Oil under the Sea. Khazzan is a 500.000 
barrel (80.000 m3) oil storage tank (Fig. 30). The 15.000 ton structure is 80 m in diameter on 
bottom and 8 m diameter on top, and about 82.0 m in height. Sea depth is about 70 m, so 
tank crest is 12 m under sea level. It has no bottom and operates on the water displacement 
principle. It is filled by placing oil in the tank above water where the additional weight of the 
oil on the water creates an imbalance in pressure. This force pressures the water out of the 
tank through the openings in the wall at the bottom. 

Initial construction was in a shallow, dewatered basin. When the tank was sufficiently 
complete so that it could float as a single unit, using compressed air, the basin was flooded, 
and the tank, a bottomless hemisphere, was moved laterally into a deeper basin and seated 
on its floor by releasing the internal air pressure. The structure was then fully completed. 
Floated once again by filling the tank with compressed air, it was towed to the site and 
positioned by mooring lines, and the air was gradually released. It was allowed to slowly sink 
further and settle on the seafloor [34].  

The geometrical characteristic of the model were taken form [32, 34, 35]. Fig. 31 shows 
the vertical section of the oil tank with the adjacent part of the surrounding sea. 

 

 
(i) – Construction on shallow 

dewatered basin on shore 

 
(ii) – Towing to the site  

Figure 30. Oil-storage tank “Khazzan” [34, 35] 
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Table 3. Material characteristics of the Khazzan store tank 

 
The sea-oil-tank system was modeled with the spatial 3D model, shown in Figs. 31 and 

32. Spatial discretization of the liquid was done with 27-node 3D brick elements, and the 
structure with 9-node shell elements. 

The harmonic ground acceleration with the period of 0.207 s (which is in accordance 
with the first period of the sea-oil-tank system), and amplitudes of 0.3 g for the horizontal and 
0.2 g for the vertical acceleration component is accepted. The material characteristics are 
shown in Table 3. Implicit time integration (∆t=0.002 s) and diagonal mass matrix were used. 

Some results are shown in Figs. 33-36, and a detailed description of the model and 
results can be found in [32].  

Fig. 33 shows the hydrodynamic water pressure for the horizontal seismic action in the 
specified points on the tank surface and Fig. 34 shows the horizontal displacements of the 
specified points of the tank for the horizontal seismic action. Fig. 35 shows the maximal 
displacements of the Kazzan oil-storage tank for the horizontal and the vertical seismic 
action. 

 

 
Figure 31. Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding 

sea water – Longitudinal section of the finite element mesh (all dimensions in meters) 
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(i) – 3D view of finite element mesh (3D 
“brick” elements for fluid and shell 
elements for tank) 

 
(ii) – 3D view of oil-storage 
tank finite element mesh 
(shell elements) 

Figure 32. Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding 
see water – axonometric view 
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Figure 33. Hydrodynamic water pressure in the specified points on the surface of the Kazzan 

oil-storage tank for the horizontal seismic action 
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Figure 34. Horizontal displacements of the specified points of the Kazzan oil-storage tank for 

the horizontal seismic action 
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(i) horizontal seismic action 

 
(ii) vertical seismic action 

Figure 35. The Kazzan oil-storage tank maximal displacements 

(i) horizontal (xx) stresses 
 

(ii) vertical (yy) stresses 

Figure 36. Maximum stresses of the Kazzan oil-storage tank in t = 0.73 s, for the horizontal 
seismic action 

 

3.4. Example 4- Underwater tunnel "Høgsfjord" 
 
The seismic behavior of the planned (but not yet realized) underwater tunnel 

“Høgsfjord” in Norway was analyzed. The tunnel is about 1400 m long and 20 m immersed in 
the sea. It’s connected to the sea-bed with cables every 200 m (axial distance) (Fig. 37). 

The tunnel has a circular cross-section with a 8.6 m inner diameter and 50-80 cm thick 
walls (Fig. 37). Intended construction material for the tunnel is prestressed concrete. Some 
other information about the planned structure can be found in [32, 36]. The material 
characteristics are shown in Table 4.  
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(i) the position of the 
tunnel 

 
(ii) cross-section of 
the tunnel 

 
(iii) visualization of the 
tunnel 

Figure 37. Underwater tunnel “Høgsfjord”, Photo: Statens Vegvesen Rogaland [36] 
 

 
Figure 38. Longitudinal section of “Høgsfjord” tunnel [36] 

 
The seismic response to the vertical earthquake component was analyzed. A plane 

(2D) model was adopted with the discretization shown in Fig. 28. Some results are shown in 
Figs. 29-31, and a detailed description of the model and results can be found in [32]. 
Displacements and stresses in the tunnel from applied vertical excitations are relatively 
small, and the tunnel has significant seismic resistance. On these types of structures, wave 
and sea current actions have more influence.  

 

 
Figure 39. Spatial discretization of “Høgsfjord” tunnel 
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36.0 0.2 25.0 40.0 
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STEEL FOR 
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Modulus 
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σu  
(MN/m2) 

210.0 0.3 78.5 0.0 1570.0 1770.0 
 
SEA 
WATER 

Velocity of sound Density of sea water 
c (m/s) ρw (KN/m3) 
1500.0 10.5 

Table 4. Material characteristics of “Høgsfjord” tunnel 
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Figure 40. Displacements of “Høgsfjord” tunnel, segment 4-5 
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(i) Maximal horizontal stresses (xx) 

  
(ii) Maximal vertical stresses (yy) 

Figure 41. Stresses of “Høgsfjord” tunnel, segment 4-5 
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Figure 42. Stresses in reinforcement and cables, “Høgsfjord” tunnel, segment 4-5 
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Fig. 43. Stresses in reinforcement and cables, “Høgsfjord” tunnel, segment 12-13 
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4. CONCLUSION 
 

The presented models for the dynamic (seismic) analysis of various types of structures 
that are in contact with fluid can simulate some of the most important non-linear effects. The 
models are simple, reliable and can be used in a wide range of practical problems. Shown 
examples illustrate some of the possibilities of the models and the developed computer 
programs (software) for various types of engineering structures. 
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